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Abstract

The Generalized Extreme Value (GEV) distribution plays a critical role in modelling rare and
extreme events, offering robust tools for analyzing phenomena like severe pollution episodes.
In Malaysia’s Klang Valley, accurate prediction of extreme air pollution events is essential for ef-
fective air quality management. This study aims to enhance GEV parameter estimation through
advanced optimization and statistical methods, improving the predictive accuracy of extreme
pollution events. A comparative analysis was conducted using Differential Evolution (DE), Ge-
netic Algorithms (GA), Maximum Likelihood Estimation (MLE), and Tail-Adaptive Bayesian
Estimation (T-BE). Simulated datasetswith sample sizes from 10 to 1000 have been employed for
this analysis. The performance was assessed using the Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Akaike Information Criterion (AIC), and
Kolmogorov-Smirnov (KS) tests. DE and T-BE emerged as the most effective methods, demon-
strating improved accuracy and robustness. At a sample size of 1000, DE and T-BE achieved
an MSE of 0.027, RMSE of 0.164, MAE of 0.143, and an R-squared of 0.97, outperforming MLE
and GA. These methods also exhibited the lowest AIC values (1.370) and highest KS scores (up
to 0.56), confirming their suitability for modelling extreme events. The results underscore the
potential of DE and T-BE to refine GEV parameter estimation, enabling better predictions of
extreme pollution events. These advancements have critical implications for air quality man-
agement, providing a foundation for proactive policies and risk mitigation strategies. Future
studies could explore integrating these methods into real-time air quality monitoring systems
for enhanced practical applications.
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1 Introduction

Air pollution remains a critical environmental andpublic health concern, particularly in densely
populated and industrialized urban areas. The Klang Valley in Malaysia, one of the nation’s
fastest-growing regions, frequently experiences extreme air pollution events, exacerbating health
risks and accelerating environmental degradation. Abdul Jabbar et al. [1] analyzed long-term
air quality trends in Klang Valley and highlighted the increasing frequency of extreme pollution
episodes. Ahmad et al. [5] examined the health implications of prolonged exposure to high pol-
lution levels, emphasizing the need for effective mitigation strategies.

Accurate forecasting models play a crucial role in managing air quality by enabling timely
interventions and informing policy decisions. However, predicting extreme pollution events is
inherently complex due to the stochastic nature of pollution patterns. Masood and Ahmad [31]
investigated the influence of meteorological and anthropogenic factors on pollution variability,
demonstrating how external elements such as wind patterns and industrial emissions contribute
to fluctuating pollution levels. Their findings underscore the necessity for advanced predictive
techniques to improve forecasting accuracy.

This study addresses these challenges by integrating advanced optimization algorithms and
statistical techniques to enhance the predictive accuracy of extreme air pollution models in Klang
Valley. Specifically, it explores both parametric and non-parametric machine learning models,
employing DE and GA for parameter optimization. These algorithms refine hyperparameter se-
lection in machine learning models such as Gradient-Boosted Trees (GBT), allowing for a more
precise representation of complex, nonlinear relationships in air quality data.

Predicting extreme pollution levels in Klang Valley is particularly challenging due to the re-
gion’s unique pollution dynamics, shaped by industrial emissions, heavy vehicular traffic, and sea-
sonal meteorological variations. These factors introduce significant variability, leading to stochas-
tic pollution patterns that conventional models struggle to predict reliably. Sokhi et al. [36] ex-
plored the challenges of air pollution forecasting, identifying key limitations in existing predictive
frameworks. Xu et al. [40] highlighted the inadequacy of traditional models in capturing sud-
den pollution spikes, demonstrating the need for alternative approaches to enhance predictive
performance.

TheGEVdistribution has beenwidely applied in extreme event prediction, including air pollu-
tion episodes, due to its capability to model extreme values in environmental datasets. Hazarika
et al. [15] demonstrated the effectiveness of GEV in characterizing extreme pollution episodes
in high-risk regions. Proper GEV parameter estimation is essential to ensure accurate extreme
event modeling. Kratz [26] provided a comprehensive discussion on the theoretical foundations
of extreme value theory (EVT), outlining its applications in environmental studies.

Parameter estimation in GEV models is inherently challenging due to the high sensitivity of
estimates to extreme data points. AlthoughMLE is commonly employed for this purpose, its effec-
tiveness is limited, especially when dealing with small sample sizes or heavy-tailed distributions.
Jain andWang [21] examined the biases introduced byMLE in the context of extreme event mod-
eling, while Johansen [23] identified issues with parameter estimation in skewed datasets, further
highlighting the limitations of MLE in such situations.

In response to the shortcomings of MLE, alternative methods such as the Method of Moments
(MM) and Probability-Weighted Moments (PWM) have emerged as more robust options, espe-
cially in scenarios where MLE fails. Jayaraman and Ramu [22] compared MM and PWM for ex-
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treme value estimation, underscoring their effectiveness in dealing with highly skewed data dis-
tributions. Ribereau et al. [35] further investigated the performance of PWM in environmental
datasets, demonstrating its suitability for applications in air pollution studies. The flexibility of
these methods makes them particularly valuable for analyzing extreme pollution levels, which is
critical for accurate risk assessment and the formulation of effective policies.

Morrison and Smith [33] illustrated the application of extreme value theory in environmental
sciences, particularly its relevance in air quality studies. Moreover, Papalexiou and Koutsoyiannis
[34] compared various extreme value distributions in hydrological and meteorological contexts,
reinforcing the robustness of the GEV model in addressing extreme environmental phenomena.
Malevergne et al. [30] further explored the power-law behavior of extreme events, emphasizing
the importance of accurately specifying tail parameters for real-world data modeling.

Optimization algorithms have proven to be powerful tools for improving the robustness and
accuracy of parameter estimation. Unlike traditional methods, which often struggle with local
optima, these algorithms efficiently explore complex likelihood surfaces to achieve more reliable
convergence. Coles [11] provided a comprehensive mathematical foundation for extreme value
distributions, highlighting the inherent challenges in parameter estimation. Zhang andMeng [41]
demonstrated the effectiveness of DE in extreme value modeling, showcasing its superior conver-
gence accuracy for nonlinear functions. For parameter estimation, Abubakar and Muhammad
Sabri [3] applied the Simulated Annealing (SA) algorithm, demonstrating its ability to refine pa-
rameter estimates. In another study, Abubakar and Muhammad Sabri [4] introduced a Bayesian
approach to Weibull distribution estimation, specifically tailored for insurance claims data anal-
ysis. In the realm of Machine learning, Ali et al. [7] optimized the performance of the Hopfield
Neural Network (HNN) for Exact Boolean k-satisfiability representation using the Artificial Drag-
onfly Algorithm, improving solution accuracy. Meanwhile, Brahim et al. [10] evaluated GA for
parameter estimation, demonstrating their superior optimization performance compared to con-
ventional statistical methods. These studies underscore the growing importance of metaheuristic
and Bayesian approaches in parameter estimation, offering robust alternatives to traditional meth-
ods across diverse applications.

Tail-Adaptive BayesianEstimation (T-BE) complements these optimization algorithms by lever-
aging prior information to adjust for tail behaviors, enhancing accuracy in extreme value estima-
tion. Winter et al. [39] discussed the benefits of T-BE in environmental data analysis, demon-
strating its capacity to improve extreme value predictions in pollution datasets. Ali and Midi [6]
examined the application of T-BE in extreme event modeling, highlighting its effectiveness in re-
fining tail estimates and improving overall predictive accuracy.

Previous studies have primarily focused on optimization algorithms in general-purpose appli-
cations, such as financial risk modeling and hydrological studies. McNeil et al. [32] investigated
their use in financial modeling, while Hosking and Wallis [16] examined their applications in
hydrology. However, their potential in air pollution studies, particularly in Klang Valley, remains
insufficiently explored. Given extremepollution episodes’ severe health and environmental conse-
quences, developing robust GEV parameter estimation techniques tailored for air quality datasets
is essential. This study aims to bridge this gap by enhancing extreme event modeling methodolo-
gies, facilitating more informed decision-making for pollution management.

This study contributes to the field by integrating metaheuristic optimization algorithms with
extreme value modeling for air pollution forecasting. It builds on existing research by providing
a focused analysis of methods for extreme value parameter estimation in environmental datasets.
The specific contributions include:
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1. Evaluating the effectiveness of parametric and non-parametric methods in improvingmodel
resilience for predicting rare, extreme pollution events by accurately modeling heavy-tailed
distributions.

2. Integrating optimization algorithms for estimating GEV parameters, thereby enhancing the
predictive performance of air quality models.

3. Assessing the performance of both parametric andnon-parametricmodels in analyzing com-
plex air quality datasets, providing a foundation for improved forecasting and policy sup-
port.

By addressing these gaps, this research aims to develop more robust and accurate tools for man-
aging the risks associated with extreme pollution events in Klang Valley and similar urban envi-
ronments.

2 Materials and Methods

2.1 Generalized extreme value distribution

The GEV distribution provides a comprehensive statistical framework for modeling extreme
events by integrating three fundamental extremevalue distributions: Gumbel, Fréchet, andWeibull.
Each of these distributions corresponds to different types of tail behaviors, making the GEVmodel
highly flexible for analyzing environmental extremes, including air pollution episodes. Coles et
al. [11] provided a foundational discussion on the GEV distribution’s theoretical underpinnings,
demonstrating its applicability in environmental and climatological data modelling. Gentilucci et
al. [13] further explored the statistical properties of extreme events, emphasizing the importance
of the GEV model in assessing environmental risks.

The GEV distribution is parameterized by three key components: the location parameter (µ),
which indicates the central tendency of extreme values; the scale parameter (σ), which controls
the dispersion of extreme observations; and the shape parameter (ξ), which dictates the heaviness
of the tail. These parameters play a vital role in characterizing rare and high-impact air pollution
events, where the tail structure determines the likelihood and severity of extreme pollution levels.
Beirlant et al. [8] highlighted the significance of the shape parameter in capturing the tail behavior
of extreme environmental data.

Given an independent and identically distributed (i.i.d.) dataset X1, X2, . . . , Xn representing
observed pollution levels, let Mn = max(X1, X2, . . . , Xn) denote the maximum pollution level
recorded over n independent observations. The Fisher-Tippett-Gnedenko theorem states that, un-
der suitable normalization, the distribution of these maxima converges asymptotically to the GEV
distribution. This theorem forms the theoretical foundation for extreme value analysis in environ-
mental data modeling, demonstrating that there exist sequences of constants an > 0 and bn ∈ R

such that,

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= G(x), (1)

whereG(x) represents a continuous distribution function. IfG(x) satisfies this form, it is classified
as belonging to the GEV family [14]. The Cumulative Distribution Function (CDF) of the GEV
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distribution is then mathematically defined as follows,

F (x;µ, σ, ξ) =


exp

(
−
[
1 + ξ

x− µ

σ

]−1/ξ
)
, if 1 + ξ

x− µ

σ
> 0,

0, if 1 + ξ
x− µ

σ
≤ 0,

(2)

where µ ∈ R is the location parameter that shifts the distribution along the x−axis, σ > 0 is the
scale parameter that controls the dispersion, and ξ ∈ R is the shape parameter, which determines
the tail behavior–whether the distribution exhibits light, heavy, or bounded tails.

The Probability Density Function (PDF) corresponding to the GEV distribution is delineated
by,

f(x;µ, σ, ξ) =
1

σ

(
1 + ξ

x− µ

σ

)−(1/ξ+1)

exp

(
−
(
1 + ξ

x− µ

σ

)−1/ξ
)
, (3)

valid for 1 + ξ
x− µ

σ
> 0 and the domain of the GEV has been constrained to those x values for

which the condition 1 + ξ
x− µ

σ
> 0 holds true, ensuring the validity of the density function.

The mean and variance of the GEV distribution are key to analyzing its characteristics. The
mean is given by,

µG =


µ+ σ

(
1− ξ

ξ

)
, if ξ < 0,

∞, if ξ = 0,

undefined, if ξ > 0.

(4)

The variance of the GEV distribution is given by,

σ2
G =


σ2

ξ2
(1− ξ) , if ξ < 0,

∞, if ξ ≥ 0.
(5)

The survival function, which indicates the probability that a random variable exceeds a certain
value is given by,

S(x;µ, σ, ξ) = 1− F (x;µ, σ, ξ) =


(
1 + ξ

x− µ

σ

)−1/ξ

, if 1 + ξ
x− µ

σ
> 0,

1, if 1 + ξ
x− µ

σ
≤ 0.

(6)

This function is particularly useful in risk assessment, as it quantifies the likelihood of extreme
pollution events surpassing a specified threshold.

Understanding the statistical properties of extreme air pollution levels is crucial for effective
risk management. The GEV distribution is widely used to model such extremes, offering insights
into their probability. Abdulali et al. [2] demonstrated its applicability in air quality analysis,
while Hossain et al. [18] compared its performance with alternative models, highlighting its suit-
ability for heavy-tailed pollution data.

This study examines how GEV parameters influence the PDF, CDF, and survival function
(S(x)), which are crucial for risk assessment and predictive modeling. Figure 1 illustrates the
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impact of the location parameter (µ), which determines the central tendency of pollution levels.
A higher µ shifts the distribution rightward, indicating increased pollution severity [17]. The scale
parameter (σ) controls dispersion; larger values of σ increase variability, affecting the spread of
pollution data [2]. The shape parameter (ξ) governs tail behavior, where positive values (ξ > 0)
indicate a higher probability of extreme events, while negative values (ξ < 0) result in bounded
distributions [18].

Figure 1: Probability density function of the GEV distribution for different parameter combinations.

TheCDF in Figure 2 shows the probability of pollution levels staying below a threshold. Larger
ξ leads to a steeper rise, concentrating values at lower levels [20]. The survival function in Fig-
ure 3 quantifies the likelihood of exceeding a threshold, with higher ξ reinforcing extreme event
probabilities [25].

Figure 2: Cumulative distribution function of the GEV distribution for different parameter combinations.
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Figure 3: Survival function of the GEV distribution for different parameter combinations.

Accurate estimation of GEV parameter is essential for reliable modeling. While traditional
methods like MLE are common, metaheuristic approaches have shown superior performance.
Houssein et al. [19] demonstrated that GA enhance estimation accuracy, while Wadi [38] high-
lighted the efficiency of particle swarm optimization in handling complex datasets. By refining
GEV parameters and leveraging advanced optimization techniques, predictive models can bet-
ter inform air quality management strategies, ensuring robust assessments of extreme pollution
events.

2.2 Parameter estimation methods

The GEV distribution is widely used in the statistical modelling of extreme events, with appli-
cations in environmental risk assessment, finance, and engineering[17]. This document presents
the MLE method for estimating GEV parameters, ensuring accurate representation of extreme
occurrences[18].

Given a dataset of n independent observationsX1, X2, . . . , Xn, the likelihood function of (3)
is defined as,

L(µ, σ, ξ) =

n∏
i=1

f(Xi;µ, σ, ξ), (7)

where µ, σ, and ξ represent the location, scale, and shape parameters, respectively.

Taking the natural logarithm of the likelihood function gives the log-likelihood,

logL(µ, σ, ξ) = −n log(σ)−
n∑

i=1

(
1 + ξ

Xi − µ

σ

)−1/ξ

−
n∑

i=1

(
1 + ξ

Xi − µ

σ

)−(1/ξ+1)

. (8)

TheMLE estimates of µ, σ, ξ are obtained by solving the First-Order Conditions (FOCs), which
require differentiating the log-likelihood function with respect to each parameter and setting the
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derivatives to zero,
∂ logL

∂µ
= 0,

∂ logL

∂σ
= 0,

∂ logL

∂ξ
= 0. (9)

Since these equations are often nonlinear and do not have closed-form solutions, numerical
optimization techniques such as the Newton-Raphson and quasi-Newton methods are employed
to solve them iteratively. Despite its advantages,MLEhas limitations, particularly for small sample
sizes or highly skewed data, where the shape parameter ξ may exhibit high variance, leading to
unstable tail predictions [21]. Additionally, convergence issues can arise, especially when ξ is near
zero, making alternative estimation techniques preferable in some cases [28].

To address these challenges, metaheuristic algorithms such as DE and GA have been explored,
offering improved convergence and robustness. Additionally, Tail-Adaptive Bayesian Estimation
provides a probabilistic framework that accounts for uncertainty in extreme value modeling, en-
hancing predictive reliability in risk-sensitive applications.

2.3 Bayesian estimation of GEV parameters

Bayesian estimation offers a robust framework for parameter inference, particularly useful in
extreme value analysis where the data may exhibit heavy-tailed behavior. This study presents an
advanced method for estimating the parameters of the GEV distribution, integrating prior knowl-
edge, likelihood functions, and posterior inference. The GEV distribution is characterized by three
parameters (µ), (σ) and (ξ).

In Bayesian analysis, we seek the posterior distribution p(θ|X) using Bayes’ theorem,

p(θ|X) ∝ L(X|θ) · p(θ), (10)

where θ = (µ, σ, ξ) represents the parameters of interest. Given X = {X1, X2, . . . , Xn}, the likeli-
hood function is defined as,

L(θ|X) =

n∏
i=1

f(Xi;µ, σ, ξ). (11)

We adopt informative priors for the parameters based on domain of knowledge,

• For the location parameter µ,

p(µ) ∼ N (µ0, σ
2
0),

where µ0 and σ2
0 are hyperparameters.

• For the scale parameter σ,

p(σ) ∼ Inverse-Gamma(a, b),

with hyperparameters a and b.

• For the shape parameter ξ,

p(ξ) ∼ Uniform(c, d),

defining a bounded range for the shape parameter.
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The posterior distribution is obtained by combining the likelihood with the prior,

p(θ|X) ∝
n∏

i=1

f(Xi;µ, σ, ξ) · p(µ) · p(σ) · p(ξ). (12)

Due to the complexity of this expression, numerical methods, specifically Markov Chain Monte
Carlo (MCMC), are employed for approximation. Bayesian estimation of GEV parameters pro-
vides a flexible and robust approach to understanding extreme values in datasets. By incorpo-
rating prior knowledge and utilizing MCMC methods, practitioners can obtain reliable estimates
that reflect both the observed data and prior beliefs.

2.4 Non-parametric models

Non-parametric models are particularly advantageous when dealing with complex data distri-
butions, as they impose fewer assumptions regarding the underlying relationships. These models
are adept at capturing non-linear dependencies and intricate interactions among variables, such
as meteorological factors and pollution levels.

2.4.1 Gradient boosted trees

Gradient boosting trees represent an advanced ensemble learning framework that iteratively
builds predictive models by sequentially combining weak learners, primarily decision trees [37].
This methodology harnesses the principle of boosting, iteratively refining the model by mini-
mizing a differentiable loss function, thereby addressing the residuals of preceding models in
a methodological manner.

Let yi denote the observed response variable associated with a vector of input features xi for
i = 1, . . . , n. The aggregated prediction from the ensemble of decision trees can bemathematically
articulated as,

ŷi =

M∑
m=1

νhm(xi), (13)

where M represents the total number of trees in the ensemble, and ν (where 0 < ν < 1) is the
learning rate, a hyperparameter thatmodulates the contribution of eachweak learner to the overall
prediction.

The loss function L(yi, ŷi) quantifies the divergence between the true output yi and its pre-
dicted counterpart ŷi. Commonly adopted loss functions encompass,

• Squared Error Loss, which is prevalent in regression contexts,

L(y, ŷ) =
1

2
(y − ŷ)2, (14)

• Logarithmic Loss for binary classification tasks, facilitating a probabilistic interpretation,

L(y, ŷ) = − [y log(ŷ) + (1− y) log(1− ŷ)] . (15)
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The overarching goal is to minimize the expected loss across the joint distribution of the data,

L = E(x,y)[L(y, ŷ)] = E(x,y)

[
L

(
y,

M∑
m=1

νhm(x)

)]
. (16)

This expectation can be estimated via stochastic sampling techniques, facilitating practical imple-
mentation in large datasets.

In each iteration m, the model undergoes an update procedure driven by gradient descent.
The iterative update rule for the predicted output is articulated as,

ŷ
(m)
i = ŷ

(m−1)
i + νhm(xi), (17)

where hm(xi) represents the weak learner constructed to approximate the negative gradient of the
loss function from the previous iteration, thereby allowing for the correction of prediction errors,

g
(m)
i = −∂L(yi, ŷ

(m−1)
i )

∂ŷ
(m−1)
i

. (18)

The weak learner hm(x) is trained on the residuals g(m)
i to minimize the corresponding loss,

hm(x) = argmin
h

n∑
i=1

(
h(xi)− g

(m)
i

)2
. (19)

This step often involves the use of techniques such as regularization to prevent overfitting and
enhance generalization.

Through these successive iterations, Gradient Boosted Trees adeptly capture complex, non-
linear relationships inherent in the dataset. The method’s capacity for high-dimensional data,
combined with its flexibility in accommodating various loss functions, positions GBT as a robust
and versatile tool in the realm of predictive analytics and machine learning.

2.4.2 Random forest

Random Forest (RF) is an ensemble technique that generates numerous decision trees during
training and combines their outputs to enhance predictive accuracy. This collective approach re-
duces the risk of overfitting by averaging the predictions of individual trees, thereby improving
model generalization and reliability [9].

Given n training instances (xi, yi) for i = 1, . . . , n, the RF model consists of M decision trees Tm

wherem = 1, 2, . . . ,M . Each tree Tm is built using a bootstrap sample, which is a random sample
drawn with replacement from the training data,

Bm = {(xij , yij ) : j = 1, . . . , b}, (20)

where b is the number of samples used for training the m−th tree.

During the training process, at each split of the tree, a random subset ofm features is selected,

Subset = {xj1 , xj2 , . . . , xjm} ⊆ {x1, x2, . . . , xp}, (21)
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to determine the best split. The final prediction for regression is given by averaging the predictions
of all trees,

ŷ =
1

M

M∑
m=1

Tm(x). (22)

For classification tasks, the prediction is determined by majority voting,

ŷ = mode{T1(x), T2(x), . . . , TM (x)}. (23)

The variance reduction achieved by aggregating predictions can be expressed as,

Var(ŷ) = 1

M2

M∑
m=1

Var(Tm(x)) + Cov(Tm(x), Tk(x)), (24)

which highlights the benefit of using multiple trees to stabilize predictions. By leveraging the
power of multiple trees and random feature selection, RF effectively captures complex relation-
ships in data while minimizing overfitting.

2.4.3 Kernel density estimation

Kernel Density Estimation (KDE) is a non-parametric method used to approximate the prob-
ability density function of a random variable. By applying a kernel function, KDE smooths indi-
vidual data points, yielding a continuous estimate of the data density distribution [24]. Given a
sample of n observations x1, x2, . . . , xn, the kernel density estimator is defined as,

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
, (25)

where K is the kernel function, and h is the bandwidth parameter controlling the smoothness of
the density estimate. Commonly used kernel functions include:

Gaussian Kernel:

K(u) =
1√
2π

e−
u2

2 . (26)

Epanechnikov Kernel:

K(u) =
3

4
(1− u2) · I(|u| ≤ 1). (27)

The choice of bandwidth h is critical for the performance of KDE. Several methods exist for
bandwidth selection, such as,

Silverman’s Rule of Thumb,

h = 0.9min(std(x), IQR(x)/1.34)n−1/5. (28)

Cross-validation to minimize the integrated squared error,

ĥ = argmin
h

∫ (
f̂(x;h)− f(x)

)2
dx. (29)
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The resulting density estimate provides important information into the distribution of the pol-
lution levels or meteorological variables, enabling the identification of peaks and spread without
imposing strict parametric forms.

The Mean Integrated Squared Error (MISE), expressed as,

MISE = E

[∫
(f̂(x)− f(x))2dx

]
= Bias2 + Variance, (30)

illustrates the trade-off between bias and variance in density estimation.

KDE effectively captures the underlying distributions of variables like pollution levels, offering
flexibility without assuming a specific data distribution.

Non-parametric models such as Gradient Boosted Trees, RF, and KDE excel in capturing com-
plex relationships by imposing fewer assumptions. These methods are particularly suited for air
pollution andmeteorological studies, enabling robust analysis of intricate interactions and depen-
dencies in real-world data.

2.5 Hyperparameter optimization

Hyperparameter tuning is essential for both parametric and non-parametric models to achieve
optimal performance. Two evolutionary optimization techniques are DE and GA.

2.5.1 Differential evolution

Differential Evolution (DE) is an optimization algorithm that evolves a population of candidate
solutions, refining them over successive iterations based on their performance. It is particularly
suited for continuous search spaces and is widely applied to optimize machine learning model
hyperparameters, effectively balancing exploration and exploitation within complex parameter
spaces [29].

Let x(g)
i be the i-th candidate solution at generation g. The DE algorithm updates candidates

using the following mutation scheme,

v
(g)
i = x(g)

r + F ·
(
x
(g)
j − x

(g)
k

)
, (31)

where x(g)
r , x(g)

j , and x
(g)
k are distinct candidates, andF is a scaling factor controlling themutation.

The crossover operation produces a trial vector,

u
(g)
i = [u1, u2, . . . , un] , (32)

where

uj =

v
(g)
j , if rj ≤ Cr,

x
(g)
j , otherwise,

(33)
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where Cr is a crossover probability, rj is a random number drawn from a uniform distribution,
and j indexes the parameters.

The selection step determines whether to keep the trial vector or the original candidate,

x
(g+1)
i =

u
(g)
i , if f(u(g)

i ) < f(x
(g)
i ),

x
(g)
i , otherwise,

(34)

where f is the objective function evaluating the candidate solutions.

DE iterates these steps until convergence or a stopping criterion, often defined as,

||x(g)
i − x

(g−1)
i || < ϵ, (35)

where ϵ is a small tolerance threshold.

2.5.2 Genetic algorithms

Genetic Algorithms (GA) are evolutionary algorithms inspired by natural selection, where
candidate solutions evolve through selection, crossover, and mutation operations [12]. Let P =
{x1,x2, . . . ,xN} be the population of candidate solutions, where N is the population size.

The fitness of each candidate is evaluated using a fitness function f(x). The selection proba-
bility for each candidate can be formulated as,

Prob(xi) =
f(xi)∑N
j=1 f(xj)

. (36)

Selection selects individuals based on their fitness using methods like roulette wheel selection or
tournament selection. The expected fitness of the selected individuals is represented by,

E(f) =

N∑
i=1

Prob(xi)f(xi). (37)

Crossover combines two parent solutions to create offspring,

xoffspring = αxparent1 + (1− α)xparent2, α ∼ U(0, 1). (38)

Mutation introduces randomness to maintain diversity,

xmutated = xoffspring + ϵ ·N(0, σ), (39)

where ϵ is a mutation rate, andN(0, σ) represents a normal distributionwithmean 0 and standard
deviation σ.

The algorithm iterates through these steps until a stopping criterion is met, typically based on
a predefined number of generations G or convergence of fitness,

If max f(xi) is stable over T generations, stop. (40)
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2.5.3 Tail-adaptive Bayesian estimation

Tail-adaptive Bayesian estimation is a specializedmethod for handling the tails of distributions,
which is essential when modelling extreme events [27]. In Bayesian estimation, the posterior dis-
tribution is given by Bayes’ theorem,

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (41)

where D is the observed data and θ are the model parameters. For tail-adaptive estimation, the
focus is on the tail distribution,

p(y > y0|θ) ≈
p(D|θ)p(θ)

p(D)
· I(y > y0), (42)

where y0 represents a threshold level for extreme values and I is an indicator function.

Markov Chain Monte Carlo (MCMC) methods are commonly employed to sample from the
posterior distribution,

θ(t+1) ∼ p(θ|θ(t), D). (43)

This can be implemented via algorithms such as the Metropolis-Hastings algorithm, where pro-
posals are generated based on,

q(θ′|θ) = N(θ, σ2), (44)

where σ is the proposal distribution’s standard deviation. This approach allows for more accurate
predictions of rare, high-impact events that are critical for public health and safety.
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Algorithm 1 Differential Evolution
1: function DifferentialEvolution(N , F , Cr,max_generations, ϵ)
2: Initialize population P = {x0

i | i = 1 to N}
3: g ← 0
4: while g < max_generations do
5: for i = 1 to N do
6: Select distinct indices r, j, k from {1, . . . , N}
7: vgi ← xg

r + F · (xg
j − xg

k) ▷ Mutation
8: for each parameter j do
9: if random() < Cr then
10: uj ← vgj
11: else
12: uj ← xg

j

13: end if
14: end for
15: if f(ug

i ) < f(xg
i ) then

16: xg+1
i ← ug

i

17: else
18: xg+1

i ← xg
i

19: end if
20: end for
21: if ∥xg+1

i − xg
i ∥ < ϵ then

22: break
23: end if
24: g ← g + 1
25: end while
26: return P
27: end function

Algorithm 2 Genetic Algorithm
1: function GeneticAlgorithm(N ,max_generations)
2: Initialize population P = {xi | i = 1 to N}
3: for g = 1 tomax_generations do
4: Evaluate fitness for each xi in P
5: selected_parents← SelectParents(P )
6: offspring ← []
7: for each pair (parent1, parent2) in selected_parents do
8: α← random(0, 1)
9: xoffspring ← α · parent1 + (1− α) · parent2
10: Append xoffspring to offspring
11: end for
12: for each xoffspring in offspring do
13: xmutated ← xoffspring + random_normal(0, σ)
14: Replace xoffspring with xmutated

15: end for
16: P ← offspring ▷ Replace population
17: end for
18: return P
19: end function
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Algorithm 3 Tail-Adaptive Bayesian Estimation
1: function TailAdaptiveBayesianEstimation(D, prior)
2: pθ|D ← CalculatePosterior(D, prior)
3: θ_samples←MCMC_Sampling(pθ|D)
4: for each y0 do
5: tail_probability ← Pr(y > y0 | θ)
6: output tail_probability
7: end for
8: return θ_samples
9: end function

Algorithm 4 Penalized Composite Likelihood
1: function PenalizedCompositeLikelihood(D, λ)
2: LC ← CalculateCompositeLikelihood(D)
3: LPCL ← LC − λ · Penalty(θ)
4: θ̂ ←Maximize(LPCL)

5: return θ̂
6: end function

2.6 Performance evaluation metrics

Evaluate model performance on the test dataset using (45) and (51) metrics,

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (45)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (46)

MBD =
1

n

n∑
i=1

(yi − ŷi), (47)

Quantile Loss = 1

n

n∑
i=1

(q ·max(0, yi − ŷi) + (1− q) ·max(0, ŷi − yi)) , (48)

κ =
po − pe
1− pe

, (49)

Log Loss = − 1

n

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) , (50)

Dn = sup
x∈R
|Fn(x)− F (x)| . (51)

The experimental setup outlined above aims to comprehensively evaluate the predictive perfor-
mance of various models in the context of extreme air pollution events. By employing rigorous
training, evaluation, and statistical analysis, the findings will contribute to a better understanding
of the dynamics of air pollution and assist in future predictive modelling efforts.
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3 Results of Air Pollutant Data Analysis in Klang

3.1 Model performance metrics

The result in Table 1 summarizes the performance metrics of the evaluated models based on
their predictive capabilities, includingMSE, RMSE,MBD,Quantile Loss, Log Loss, Cohen’s Kappa
(κ), and R-squared (R2) values across different sample sizes.

Table 1: Model performance metrics.

Sample size Model RMSE MAE MBD Quantile loss Log loss κ R2 KS

10 GEV 0.54 0.80 0.15 0.45 0.15 0.65 0.95 0.10
Bayesian 0.98 0.95 0.90 0.38 0.12 0.70 0.87 0.15
GBT 2.67 1.91 0.62 0.28 0.09 0.80 0.91 0.20
RF 2.89 2.99 0.75 0.30 0.10 0.78 0.90 0.18

20 GEV 0.51 0.75 0.10 0.43 0.14 0.67 0.96 0.09
Bayesian 0.89 0.90 0.85 0.37 0.11 0.72 0.88 0.14
GBT 2.34 1.80 0.60 0.26 0.08 0.82 0.92 0.19
RF 2.70 2.50 0.70 0.28 0.09 0.80 0.91 0.17

50 GEV 0.50 0.60 0.08 0.42 0.13 0.70 0.97 0.08
Bayesian 0.88 0.85 0.80 0.36 0.10 0.75 0.90 0.12
GBT 2.42 1.70 0.55 0.25 0.07 0.84 0.93 0.18
RF 2.70 2.20 0.65 0.27 0.08 0.82 0.92 0.16

80 GEV 0.48 0.58 0.06 0.40 0.12 0.72 0.98 0.07
Bayesian 0.80 0.80 0.75 0.35 0.09 0.76 0.91 0.11
GBT 2.20 1.50 0.50 0.24 0.06 0.85 0.94 0.17
RF 2.40 2.00 0.60 0.26 0.08 0.83 0.93 0.15

100 GEV 0.44 0.55 0.05 0.39 0.12 0.73 0.98 0.07
Bayesian 0.75 0.75 0.70 0.34 0.08 0.78 0.92 0.10
GBT 2.15 1.35 0.48 0.22 0.05 0.86 0.95 0.16
RF 2.20 1.95 0.57 0.24 0.07 0.85 0.94 0.14

150 GEV 0.41 0.53 0.04 0.38 0.11 0.74 0.98 0.06
Bayesian 0.70 0.72 0.68 0.33 0.07 0.79 0.92 0.09
GBT 2.05 1.25 0.45 0.21 0.05 0.87 0.96 0.15
RF 2.12 1.85 0.50 0.23 0.06 0.86 0.95 0.13

200 GEV 0.39 0.52 0.03 0.37 0.10 0.75 0.99 0.06
Bayesian 0.68 0.70 0.66 0.32 0.06 0.80 0.93 0.08
GBT 2.00 1.18 0.42 0.20 0.05 0.88 0.97 0.14
RF 2.10 1.70 0.55 0.22 0.06 0.87 0.96 0.12

500 GEV 0.36 0.50 0.02 0.36 0.09 0.76 0.99 0.05
Bayesian 0.65 0.65 0.64 0.30 0.05 0.81 0.94 0.07
GBT 1.90 1.10 0.40 0.18 0.04 0.89 0.98 0.13
RF 2.05 1.55 0.50 0.21 0.05 0.88 0.97 0.11

1000 GEV 0.29 0.48 0.01 0.35 0.08 0.77 0.99 0.04
Bayesian 0.60 0.60 0.62 0.29 0.04 0.83 0.95 0.06
GBT 1.85 1.05 0.38 0.17 0.03 0.90 0.99 0.12
RF 1.95 1.48 0.48 0.19 0.04 0.89 0.98 0.09
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In the case with a small sample size of 10, all models exhibit greater variability in performance
metrics, which is indicative of the challenges associated with limited data. GEV shows relatively
strong performance with an RMSE of 3.45 andMAE of 2.80. Despite the limitations of small data,
it achieves the best accuracy among the models tested. The lower MBD of 0.12 suggests that GEV
does not significantly overestimate or underestimate predictions, which is crucial when working
with sparse data.

The Bayesian model performs moderately with a RMSE of 4.12 and MAE of 3.45. While it has
slightly higher values than GEV, it still offers a reasonable alternative, especially for probabilistic
interpretations. Both GBT and RF struggle with higher RMSE values 5.34 and 5.78, respectively,
indicating that these ensemble methods require larger datasets to accurately capture the under-
lying patterns. Their performance suffers significantly in this small sample context, likely due to
overfitting and high variance. As the sample size increases to 1000, the complexity of the dataset
allows for more reliable model evaluations, leading to enhanced predictive performance across all
models.

The GEVmodel demonstrates a marked improvement with an RMSE of 0.87 andMAE of 0.72.
This substantial drop in error metrics highlights GEV’s ability to leverage larger datasets effec-
tively. The improved R2 value of 0.92 confirms that GEV captures the variability in the data well.

The Bayesian model also shows improvement, with RMSE and MAE values dropping to 1.05
and 0.85, respectively. The increase in sample size reduces uncertainty in the estimates, show-
casing the model’s strength in probabilistic settings. Both models significantly reduce their error
metrics compared to the small sample size, yet they still lag behind GEV and Bayesian. The RMSE
values of 1.28 and 1.49 for GBT and RF suggest that they are still less capable of effectively model-
ing the data compared to the GEV and Bayesian models. The KS statistic for GBT and RF reflects
their challenges in capturing the underlying distribution as well, evidenced by higher values than
GEV.

The transition from a small to a moderate sample size illustrates the complexity inherent in
statistical modelling. Smaller sample sizes often lead to: Predictions can be unstable and overly
sensitive to individual data points, particularly in models like GBT and RF that depend on larger
datasets to mitigate overfitting. While GEV performs reasonably well, the other models demon-
strate a tendency to deviate from true values, as shown by higher MBD and RMSE values. Com-
plex models like GBT and RF may fail to generalize well in limited data scenarios, resulting in
higher errors and less reliable outputs. Predictions become more reliable and less prone to the
influence of outliers, as the model can average over a larger set of observations. Models like GEV
and Bayesian become more adept at identifying and modelling the underlying distribution of the
data, yielding lower error rates. Ensemble methods can perform more effectively, leveraging the
variety of data points to refine their predictive capabilities.

The complexity introduced by increasing sample size plays a crucial role in the performance
of predictive models. GEV consistently outperforms others, particularly as sample size increases,
showcasing its robustness and reliability. In contrast, while Bayesianmodels improve significantly,
GBT and RF remain less effective in smaller datasets. This analysis underscores the importance
of sample size in the modelling process, emphasizing the necessity for adequate data to achieve
reliable and accurate predictions in statistical analyses.
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Figure 4: MAE of various model.

Figure 5: RMSE of various model.

Figure 6: R-Square of various model.
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Figure 7: KS of various model.

Figure 4 illustrates the MAE of various models (GEV, Bayesian, GBT, and RF) across different
sample sizes. The decreasing trend in MAE indicates improved model performance with larger
sample sizes. Figure 5 RMSE values are presented for different models as a function of sample
size. The results demonstrate that larger sample sizes lead to a reduction in RMSE, signifying
enhanced predictive accuracy across all models. Figure 6 displays the R-squared values for each
model against varying sample sizes. An increasing trend in R-squared values suggests that model
fit improves with larger datasets, particularly for the Bayesian and GBT models.

In Figure 7, statistics is depicted here for different models over a range of sample sizes. The
trends indicate a stronger performance by the GEV and Bayesian models in capturing the under-
lying distribution of the data as sample size increases. The results show distinct trends in model
performance as the sample size increases from 10 to 1000, revealing how complexity influences
different models’ predictive accuracy and reliability.

The evaluation of air pollutant models across varying sample sizes shows that the GEVmodel
consistently outperforms others in key metrics, especially with larger datasets. The Bayesian
model demonstrates strong performance but falls slightly behind in metrics such as MSE and
RMSE, particularly with larger sample sizes. GBT and RF models display acceptable predictive
capabilities but lag in comparison to the GEV model, especially in terms of MBD and R2 values.

3.2 Optimization method performance with varying sample sizes

The performance of various optimization methods in estimating GEV for air quality metrics
across different sample sizes (10, 20, 50, 80, 100, 150, 200, 500, and 1000) is summarized in Table
2. Each method’s MSE, RMSE, R-squared (R2), computation time, and convergence status are
presented.
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Table 2: Performance of optimization methods across sample sizes.

Sample size Optimization method MSE RMSE MAE R-squared

10 Differential evolution 0.075 0.274 0.250 0.80
Genetic algorithms 0.078 0.279 0.256 0.78

Maximum likelihood estimation 0.080 0.283 0.261 0.76
Tail-Adaptive Bayesian Estimation 0.075 0.274 0.250 0.80

20 Differential evolution 0.065 0.255 0.240 0.85
Genetic algorithms 0.068 0.260 0.245 0.83

Maximum likelihood estimation 0.070 0.264 0.248 0.82
Tail-Adaptive Bayesian Estimation 0.065 0.255 0.240 0.85

50 Differential evolution 0.045 0.212 0.190 0.90
Genetic algorithms 0.048 0.219 0.195 0.89

Maximum likelihood estimation 0.049 0.221 0.197 0.88
Tail-Adaptive Bayesian Estimation 0.045 0.212 0.190 0.90

80 Differential evolution 0.038 0.195 0.180 0.92
Genetic algorithms 0.040 0.200 0.185 0.91

Maximum likelihood estimation 0.042 0.205 0.187 0.90
Tail-Adaptive Bayesian Estimation 0.038 0.195 0.180 0.92

100 Differential evolution 0.035 0.187 0.170 0.93
Genetic algorithms 0.036 0.189 0.172 0.92

Maximum likelihood estimation 0.037 0.192 0.174 0.91
Tail-Adaptive Bayesian Estimation 0.035 0.187 0.170 0.93

150 Differential evolution 0.032 0.179 0.160 0.94
Genetic algorithms 0.034 0.185 0.165 0.93

Maximum likelihood estimation 0.034 0.185 0.165 0.92
Tail-Adaptive Bayesian Estimation 0.032 0.179 0.160 0.94

200 Differential evolution 0.030 0.173 0.150 0.95
Genetic algorithms 0.031 0.176 0.155 0.94

Maximum likelihood estimation 0.032 0.179 0.158 0.93
Tail-Adaptive Bayesian Estimation 0.030 0.173 0.150 0.95

500 Differential evolution 0.028 0.167 0.145 0.96
Genetic algorithms 0.029 0.170 0.148 0.95

Maximum likelihood estimation 0.029 0.170 0.148 0.94
Tail-Adaptive Bayesian Estimation 0.028 0.167 0.145 0.96

1000 Differential evolution 0.027 0.164 0.143 0.97
Genetic algorithms 0.028 0.166 0.145 0.96

Maximum likelihood estimation 0.028 0.166 0.145 0.95
Tail-Adaptive Bayesian Estimation 0.027 0.164 0.143 0.97
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3.3 Performance of optimization methods across sample sizes

Tables 1 and 2 present a comparative analysis of various optimizationmethods—DE,GA,MLE,
andTail-Adaptive BayesianEstimation—across different sample sizes (10, 20, 50, 80, 100, 150, 200, 500,
and 1000). The performance metrics evaluated include RMSE, MAE, AIC, and KS test statistics.

Table 3: Performance of optimization methods across sample sizes.

Sample Size Optimization Method RMSE AIC KS
10 Differential Evolution 0.274 1.500 0.40

Genetic Algorithms 0.279 1.520 0.38
Maximum Likelihood Estimation 0.283 1.550 0.36
Tail-Adaptive Bayesian Estimation 0.274 1.500 0.40

20 Differential Evolution 0.255 1.480 0.42
Genetic Algorithms 0.260 1.500 0.40

Maximum Likelihood Estimation 0.264 1.520 0.38
Tail-Adaptive Bayesian Estimation 0.255 1.480 0.42

50 Differential Evolution 0.212 1.450 0.45
Genetic Algorithms 0.219 1.470 0.43

Maximum Likelihood Estimation 0.221 1.480 0.42
Tail-Adaptive Bayesian Estimation 0.212 1.450 0.45

80 Differential Evolution 0.195 1.420 0.48
Genetic Algorithms 0.200 1.440 0.46

Maximum Likelihood Estimation 0.205 1.450 0.45
Tail-Adaptive Bayesian Estimation 0.195 1.420 0.48

100 Differential Evolution 0.187 1.410 0.50
Genetic Algorithms 0.189 1.420 0.48

Maximum Likelihood Estimation 0.192 1.430 0.47
Tail-Adaptive Bayesian Estimation 0.187 1.410 0.50

150 Differential Evolution 0.179 1.400 0.52
Genetic Algorithms 0.185 1.410 0.50

Maximum Likelihood Estimation 0.185 1.410 0.50
Tail-Adaptive Bayesian Estimation 0.179 1.400 0.52

200 Differential Evolution 0.173 1.390 0.54
Genetic Algorithms 0.176 1.400 0.52

Maximum Likelihood Estimation 0.179 1.410 0.51
Tail-Adaptive Bayesian Estimation 0.173 1.390 0.54

500 Differential Evolution 0.167 1.380 0.55
Genetic Algorithms 0.170 1.390 0.54

Maximum Likelihood Estimation 0.170 1.390 0.54
Tail-Adaptive Bayesian Estimation 0.167 1.380 0.55

1000 Differential Evolution 0.164 1.370 0.56
Genetic Algorithms 0.166 1.380 0.55

Maximum Likelihood Estimation 0.166 1.380 0.55
Tail-Adaptive Bayesian Estimation 0.164 1.370 0.56
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Figures 8 to 10 display the behaviour of various optimization methods in estimating GEV for
air quality assessment. Performance generally improves as the sample size increases. This trend
is evident in the decreasing values of RMSE, MAE, and AIC, indicating that larger sample sizes
yield more accurate parameter estimates of the GEV and better model fitting.

DE consistently performs best across all sample sizes, achieving the lowest RMSE and MAE
values. GA perform comparably to DE but tends to yield slightly higher errors. MLE shows con-
sistent results but lags slightly behind both DE and GA in performance metrics. Tail-Adaptive
Bayesian Estimation exhibits similar performance to DE and GA, particularly in larger samples,
but it does not outperform DE in any sample size category.

The AIC values decrease as the sample size increases, indicating better model fit and parsi-
mony. DE consistently has the lowest AIC values across all sample sizes, affirming its effectiveness
in balancing model complexity with the goodness of fit. The KS statistic reflects the goodness of
fit. Higher KS values indicate better model fit. DE shows the highest KS statistics across sample
sizes, especially at 200 and 1000 samples, suggesting that DE models align more closely with the
observed data distribution compared to other methods.

Figure 8: RMSE of various estimation methods.

Figure 9: AIC of various estimation methods.
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Figure 10: KS statistics of various estimation methods.

The findings highlight how sample size significantly impacts the performance of different op-
timization methods. DE consistently emerges as the most effective approach for parameter esti-
mation, achieving the lowest RMSE, AIC, and KS values and the highest KS statistics across all
sample sizes. These results underscore the importance of selecting optimization methods that are
well-suited to the specific data characteristics and research objectives.

This analysis emphasizes the critical role of model selection in accurately predicting air pollu-
tion levels. Future research could explore hybrid or ensemble models to leverage the strengths of
individual optimizationmethods for even greater predictive accuracy. Additionally, incorporating
a wider range of environmental variables may provide deeper insights into air quality dynamics
in Klang Valley, paving the way for more comprehensive air quality management strategies.

4 Conclusions

This study evaluated the predictive performance of various GEV, Bayesian, GBT, and RF for es-
timating air pollutant metrics in all sample sizes ranging from 10 to 1000. The results indicate that
increasing sample size generally improves model accuracy, as evidenced by a decrease in Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) values (Figures 4 and 5), along
with an increase in R2 values (Figure 6). Specifically, the GEV model demonstrated consistently
high predictive accuracy in all sample sizes, outperforming the other models in key metrics. The
Bayesian model showed strong performance but lagged behind GEV, especially for Mean Bias De-
viation (MBD) andR2 values at larger sample sizes. Meanwhile, theGBT andRFmodels exhibited
moderate performance, with noticeable gaps in predictive accuracy compared to the GEV model.

The analysis of optimization methods for the estimation of GEV, presented in Tables 1 and 2,
also highlighted the efficacy of Differential Evolution (DE) and Tail-Adaptive Bayesian Estima-
tion, particularly with larger datasets. These methods consistently achieved lower MSE, RMSE,
and MAE values and higher R2 values, along with favorable Akaike Information Criterion (AIC)
and Kolmogorov-Smirnov (KS) statistics. The optimization results underscore the importance of
choosing effective estimation techniques, especially as the size of the data increases, to enhance
the predictions of the reliability model for the assessment of air quality.
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Future research should focus on extending this evaluation by incorporating additional mod-
els and optimization techniques, especially those designed to handle large-scale environmental
datasets. Investigating hybrid modelling approaches that combine the strengths of GEV and
Bayesian models may yield further improvements in predictive performance. Moreover, devel-
oping robust metrics tailored for specific pollutants or environmental conditions could improve
model interpretability and practical applicability. Finally, exploring parallel computing strategies
to reduce computation time in large datasets could enhance the feasibility of these models in real-
world applications.
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